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Error Curves for  Lanczos' "Selected Points" Method 
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We show how t o  obtain two new families of "selected points", one of which tends 

t o  minimize the absolute maximum error  of t he  solution, and the  other tends t o  

minimiee the abclolute value of the error at the final time point, I f 1  

I. Introduction \ 

Various investigators (Clenshaw, 1957; Fox, 1962; Clenshaw and Norton, 1963; 
a 

Kizner, 1964; Wright, 1964) have made use of Lanczos' method of \elected point>(&, 

319%) i n  the solution of ordinary d i f fe ren t ia l  equations. 

points has been either the  zeros of Tn (x) or  the  maxima of T 

f ind t w o  other choices of "sJected points" and indicate t h e i r  advantages. 

h 

The choice of these 
&-.a+ %}+ ( 1 9 6 . 1 )  

CLicoCXc- 
du&d 

(x). n !  A 
Here we 

e 
LciLcr; c; 

c h - t  

k / ~ - b & .  

Wright (1964) attempts a jus t i f ica t ion  of the  choice of the zeroes of Tn (x), - 
' n 

but h i s  form of the residual, E = n ( x  - x,) $ (x), where $ (x) i s  an unknown 
J. id 

function which depends on the d i f fe ren t ia l  equation, is incorrect. I n  f ac t  we 

w i l l  show that  loca l  extrema occur near the xi. 

Some of our conclusions about the form of error  curves are  similar t o '  

Lanczos (1956). Whereas h i s  discussion (p. 477) i s  concerned w i t h  a par t icular  

equation, we consider the question more generally. 

4 Other topics that we consider concern estimates of the e r ror  when the length 

of t h e  in te rva l  i n  which the solution is sought i e  changed, and t h e  degree of t he  

.I 
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approximating polynomial changed. 
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11. Results from the Constructive Theory of Functions 

$&/i&4 xi-& 

where Y = (y (1) , y (2) , . . y (m)) i s  the  derivative of Y with respect t o  x, the  

independent variable. 
A 

We also assume t h a t  (1) holds fo r  -1 S x S 1. 

To we w i l l  assume t h a t  m = 1, and c a l l  our solution y (x). 

I n  solving a d i f f e ren t i a l  equation by Lanczos' method, using n evaluation of 

derivatives,  we obtain 8 polynomial approximation of degree n,pn (x) 

solution. 

fo r  the 

I n  order t o  specify how "good" an approximation is, we adopt the - 

uniform norm. Thus 

where we assume that y (x) i s  a continuous function. 

choose the "selected points" so t h a t  (2) i s  as  small as possible, i f  not for  a l l  

F (y, x) of (1) then fo r  suff ic ient ly  " w e l l  behaved" functions F (y, x). 

Thus our problem i s  t o  

I n  order t o  see how good these approximations can be, we make use of r e su l t s  

f'rom the  constructive theory of functions. 

theory at about the leve l  of a r e a l  variables course i s  Nat4son (1955). 

(1962) provides a functional analysis oriented treatment with m a n y  new resul ts .  

The following fhndamental theorem i s  due t o  Chebyshev and Borel. 

Theorem 1. 

and l e t  the integer n be given. 

A good source for learning the 

Golomb 

Let y (x) be a continuous function on la, b] or  y (x) C$a, b]g, 
Define 

where p (x) i s  any polynomibal of degree n or less .  n 
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Then 

a) There exis ts  a polynomial gn contained i n  the family of pn such that  

. .  

i 

b) For 5.. (x) t o  have t h i s  property, it i s  necessary and sufficient that  
ab 

attain i ts  maximum absolute value H h a t  least n + 2 points of . 6  
* e  

[a, b], and that  t he  maxima alternate with the minima a t  these points. L 

c) The gomamial  sn (x) i s  uniqe .  

The Weierstrass approximation theorem te l ls  us that  En tends t o  zero for  

However, there i s  a theorem due t o  Bernstein, which any continuous function. ! 

te l ls  us that for  any number sequence 

A 2 A 1 2 A 2 2 . .  . . l i m A  = O  
0 n 

i 

there ex is t s  a function y (x) E C $la, b]$ with the best  approximations 

En (y) = A n =  

it may be impractical t o  t r y  t o  find a polynomial approximation for  it. 

I 

Thus i f  a l l  we know about the function is  t h a t  it i s  continuous, 

The ra te  at which En tends t o  zero depends largely on the "degree of 

smoothness" of the function approximated. 

l i s t  continuous functions, differentiable functions, n-times differentiable 

I n  order of increasing smoothness we 
I 

, functions, in f in i te ly  differentiable f'unctions, analytic function, ent i re  
i 
I 

'I 

flrnctions, and polynomials of restricted degree. 

of results due t o  Jackson. The form of the  theorem as stated here can be found 

i n  Golomb (1962). Cn [a, b]we denote functions that have continuous 

The following i s  an abstract 

By y (x) 

nth order derivates i n  [a, . 
Theorem 11. 

a)  If y (x) 6 C' [a , such that for x s [a, d j y '  (x) / s %, then 
9 * 

1 '  
, 

3 , 
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(n + 1)  2 

r P M  
( n + 1 )  n .  . . ( n - p + 2 )  

c) Under the assumptions for  (b) and n 2 2 p - 4 

I 

Thus we have bounds on E which t e l l  us how rapidly En goes t o  zero. From n 

(c)b we see that  for  any y (x) e cP[a, $n goes t o  zero at least as fast as 

(n  + l)-'. When y (x) i s  in f in i t e ly  differentiable o n b ,  b] , or y (x) c CoorL, h- ' 

m- we have 

for all p. 

Bernstein has proved a converse theorem: & 
A 

En 

(,+I). . . . ( n - p + 2 )  

f o r  a constant A, then y ( x )  c Cp fi, g. 

i 
, L  

1 .  

I 

h 
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We next see what the convergence i s  fo r  functions analytic on the l i ne ,  

defined on F, b] i s  said t o  be analytic on the interval  i f  for  any xo e [a, bJ 

there i s  a power ser ies  

y (x) 

Q) 

for - R which represents the function a t  a l l  points belonging - 3 
simultaneously t o  [a, 

of functions analytic i'n the segment b, 
t o  be an ent i re  function. Then we have: 

Theorem 111: Let y (x) 6 C [a, b] . Then f (x) e A [a, b l  i f  and only i f  

and (xo - R, xo i- R). We denote by A la, b j  t h e  class 

, If R = 00, the  function is  said 

En < K qn 

where K and q < 1 are constants. 

Moreover, y (x) i s  an en t i r e  function i f  and only i f  

To apply these theorems t o  solutions of d i f fe ren t ia l  equations (1) , where 

the  solution i s  not available, we can make use of the following two theorems 

(Lef schetz ,f1%2) 

Theorem I V :  Let F (y, x) of (1) be Cp i n  y and x i n  a cer ta in  region 0 of the 

product space of y and X. Then t h e  solution y (x, xo, yo), where xo and yo are  

the i n i t i a l  conditions, such that y ( x o ,  xo, yo) = yo belongs t o  C%n xo and yo 

and belongs t o  p1 i n  X . 

5 



Theorem V: 

analyt ic i ty  then the solution y (x, xo, yo) such tha t  (y (x) , x) c A, y (x , x , y ) = y , 
i s  analytic i n  all three arguments. 

I f  F (x, x) i s  analytic i n  both variables and A i s  the domain of 
0 0 0  0 

Having found good estimates of how En varies with increasing n fo r  a 

par t icular  f'unction defined i n  a given interval,  we ask how E behaves when we 

Here we have i n  mind the claims made that 

n 
\ 

vary a and b. 

"global" methods are more eff ic ient  than "local" methods. 

i 

3 

Here Theorem I1 t e l l s  

us what t o  expect If these bounds a r e  close t o  the best possible bounds, 

it i a  easy to show casea Where these bounds are a poor indication of the actual 

error ,  

But 

Theorem I1 does suggest tha t  for a given y (x) g Cp l a ,  b7 and M more 
P 

o r  less independent of the interval,  t ha t  En is  proportional t o  (b - a) min (n, PI 

where by min (n, p) we mean choosing the minimuin value from the collection of 

values n and p. This resu l t  i s  consistent with our experimental findings, 

Another approach tha t  we might take i s  t o  assume tha t  we have a "well 
%urn o+& i 

4 i 
behaved" function which can be expanded i n  a Chebyshev ser ies  such t h a t  the error  

i n  using the truncated series i s  close t o  En. E l l i o t t  (1963) has derived the 

following bound an, the coefficient of Tn (x) i n  the expansion of y (x) where 

Y ( X I  8 COD b, b] 

&-& as before, max /yn (x)/ = Mn 

1 -..I .> . . 
m-3- 

expansions converge 
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r we know that  or y >-I e 

Thus Ell iott '  
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. 
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December 3, 1964 

tt 9 
x) is any polynomial of degree n or  l e s s  that sa t i s f i e s  %(e) = y ( 8 )  

where $’ p.- 

a) %ere exis ts  a polynomial i&, contained in the  family of 

% such that 

b) For Q(x) t o  have t h i s  property, it is necessary and suff ic ient  

that y(x) - g ( x )  a t t a in  i ts  meximum absolute value 
aA 

at least n points of [a, b], and that the maxima 
4 

alternate with the minima at these points. 

The polynamial <(x) is unique. c) 

Proof: !!!he proof of existence (a) follows from a theorem in functional 

analysis (Theorem 1.1 of Golomb (1962)) which s t a t e s  that when the 

menifold of approximants is f i n i t e  dimensional, the  set of best  approximations 

is n?n empty: ! l G . C L - & e + & ,  c - J - - - - & - ~  &’=, *’ 
. _ -  -- 

-.- - 
Next we prove the sufficiency of condition (b), Suppose g ( x )  

is a polynomial such that it satisfies the boundary conditions and 

y(x) - g ( x )  attains its maximum modulus M, with alternating signs, 

at n points of (a, b). 

satisfying the boundary conditions, we cannot have 1 y(x) - g ( x )  I < M 

Lf g(x )  is any other polynomial of degree n 

’r: 

, 

I 
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throughout [a, b] became the polynomial 

would be of alternating sign at the n points in question, and would 

vanish at n-1 in (a, b) in addition to vanishing at the end points, 

ai& IO i w B O l b l O a  

N e x t  we shar that condition (b) is necessary. Suppose t h e  msximum 

error M is attained at fewer than n points having alternating sign. 

Then the interval [a, b] can be subdivided into n-1 subintervals, in , 

each of which we have one or the other of the inequalities: 

.. . 

~ a t i 6 f b d  alfernately, where a le a positive number. 

by taking each subintehl to include one extremum of y(x) - cl,(x). 
L e t  g ( x )  be a polynamial which vanishes only at the end points and the 

n-2 points cOIPmOn to two of these subintervals. 

of parameter y, we have 

This can be done - 
l 

Therefore for some choice 
.b 
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Contradicting the  extremal property of g(x). 

Then so is 

a/c 
But y(x) - %(x) a t t a ins  its extrema% fewer than n points, which is 

A 

impossible. 

, -  

, I  
$ 1  

We now ask how much larger is En than En? We can see immediately 

that gn 5 2 En, since if we start out With gn and add a first degree 

polynamial t o  satisfy the  boundary conditions, then the meximum increase 

in the error  modulus is En. 

By maklng some assumptions about the form of the error curves we 

can obtain a mre r e a l i s t i c  estimate of the relationship of En and f. 
We assume that the  error  curve for %(x) f o r  [a, b] is the  same as 

for sn(x), but with a larger  interval [A, B], where A<a, and Bib. 

In general we can find a n A  and B which w i l l  satisfy these conditions, 

assumlng that the function y(x) can be continued beyond the original 

interval. 

of the intervals is cos($ 

If in addition we assume that the  r a t i o  of the  lengths 

(assuming that sn (x) resu l t s  in an 



error curve resembling T ( x ) ) ,  and that En is  proportional t o  the n+l n+l 
the  p e r  of the r a t i o  of the lengths of the interval, then 

J I L I K T I  

for large n it  agpearrr that in tab t o  

V. Choices of "Selected points" 

A t  this point we have a clear picture of the optimum error curve, 

This error curve has n extrema alternating in associated with g(x ) .  

sign and is  zero at the  i n i t i a l  and fiaal values of X. 

choose "selected points" t o  achieve t h i s  form of error curve. 

Now we seek t o  

Consider the d i f fe ren t ia l  equation (1) with F 6 C" in y and x i n  

a region containing the solution of the d i f fe ren t ia l  equation f o r  the 

fixed i n i t i a l  conditions. 

which indicates that y(x) and $(x) have rapidly converging polynomial 

men meorem IV implies that y(x) e c-ca, b], 

approximations. 

We construct the  error  curve by s ta r t ing  out w i t h  the exact solut im 
r and using Picajcd's method of successive approxiplations t o  see how t h e  

I 



I errors  enter. Hopefully this method w i l l  converge rapidly fo r  a large 

enough n and a good choice of "selected points," where n is the number 

I of %elected points." 'Ibis assungtion vu1 appear more reasonable .pIL- 

k when certain matrices are derived,&- 

Thus we calculate the n values of the derivates at the "selected 

polnte" using the exact solution to  obtain $,, the first a-1 t h  

degree polynomial approximation f o r  the derivative, and %, the first 

, n th degree polynomial approximation fo r  y(x). 

% w i l l  differ from y(x) because 9 is inexact, except at some 

few points. Hence the  error curve associated with % w i l l  have extrems 

at the "selected points,11 where Q.,. is exact. 
. 

Q,, ')c 
The next approxiwtion is determined by equating c& and f(8, 6) 

at the  "selected points." 

then f o r  large enough n we expect that, because of averaging, the 

integrated values, Q.,,, should not d i f f e r  much f'rom y(x) even though 9 
may differ considerably from f(x). 

much f r o m  

If a good choice of points has been made 

This implies that Qz w i l l  not d i f f e r  

It is then our task to  choose the points so that averaging 

does occur. 
b 

If we have only one dependent variable then one choice of "selected 

points" might be the n extrema1 points referred t o  in meorem V I  (b) 

, 13 
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This would make the maximum absolute error  in &1 at the "selected points" 

as small as possible while satisfying the boundary conditions. Thw 

% w i l l  not differ 9ppreciably from &1, and the process w i l l  have converged 

i n  a pract ical  sense. 

there llrelect%& polntrrll except i n  an rppraxlmate amner to be described. 

Unfortun8tely it may not be pract ical  t o  calculate 

Thus we assume that the error curve $(x) - $(x) can be adaquately 

represented by an n t h  degree polynomial. We can now easily calculate 

the "selected points" since we know the  form of the  integrated error 

curve, y(x) - q(x) .  

fbrm Tn+l(x) with a change i n  scale. We define a new "stretched" polynomial 

We guess that the  integrated error  curve is of the - 
- * 

From Theorem VI we see that Tn+l(x), -1 5 x 5 1, is the unique error 

curve, since it has the required number (n) of extrema with the alternation 

property. Thus the'kelected points" are given by 
\ 

4- =I, 2, .. . 

We call E t s i b u t i o n  'the "extremB1." 
(JWflAL) 

We shall ca.ll the usual distribution, 

the Chebyahev. This choice tends t o  make 

not necessarily the integrated error curve. 

we might use is based on the zeroes of the Legendre polynomials, as used 

in Wumlan quadnature. 

Another dis t r ibut ion that 
pm CY) 

h 

If we are particularly concerned with the 
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accuracy of end point values, and the partial derivatives 

a r e  small, then this choice has much t o  commend it. Because of the properties 

of Oauesian Qua+ture w e  expect t o  obtain excellent accuracy at the 

end points provided the partial derivatives are small. We now seek t o  

show that 

where 

and the correspondin& quantities using the Gaussian abscissas and the 

extremsl points (Q. 
p..--;rc;&- 

%(x)&ebyr*, we mean &1 determined by using the  zeroes of Tn(x), 

7 
%- f i = ~  ZA -4 ~ ~ ( 7 )  u " A ,  

Fi r s t  we derive the form of the error curyes f o r  the first i terat ion.  

For the Chebyshev case we obtain 



.. 
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DISTRIBUTION OF THE MAGNITUDES 'OF J THE EX!L'REMA FOR LARGE n ... 
w Fraction Having Magnitudes . .  

2 .WM 2 -75 M 2 .WM 2 .25 M I  
Chebyshev aapas -29 -67 84 
Legendre .40 ' .62 * .84 0 9 6  

i L 

. I  

, ,' 
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4 .  8 
Rmm ( t )  we see that if n is odd there is no truncation error at  the 

1 1 1 I . end point Farlargentheterminvolvlng n+l - - n-1 can i 
8 

be neglected. It is easily shown f r o m  (t) that the signs of the e x t r a  I 

points alternate and the magnitudes are given by 

where c depends only on n and i is the  number of the "selected point." 

Thua the  magnitudes of the extremas a r e  small at the  ends and a re  largest  

. a t  the miwe of the interval.  mom it follows that f o r  m g e  n 

about 2g$ of the extrema will have a -tude between M, the maximum 

of fhe extrema and .gM. - .. ,-- -- 

In Table I we show the resul ts  f o r  other magnitudes and compare 

'1 -- with the  case using the  zeroes of the Legendre polynomials. 
- 

Table I 
-~ ... . - 

1 

1 

I 

.v -' 
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j 

I ,  

/o 
To find a fornnU analogous to  (9 )  for the Legendre case we &e 

use of the w e l l  known asymptotic formula 

w h i c h  for hrge n is like the square root of (9). 
3 

(13) was evaluated for various n and compared with the exact 
t f 3  

find 

results. 

The maximum errorL(17) for n = 6, 24, and 96 is about .03, .01, and 

,003 respectively. The results of Table I hold surprisingly well for 

I t 
i f  
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- 

On t he  basis of the distribution of the magnitudes of the extrema 

It is possible t o  prove these results by expanding the error curve 

in T~~polymmIals, and note that if the term of highest n, cTr(y) 

is neglected, then we can compare the magnitude of Q with the magnitude 
c 

of the largest  extrema of the error curve. 

an n th degree polynomial by an n-1 the degree polynomial by finding the  

coefficient of T and subtracting pn. 

This is similar t o  approximating 
k 
4 K 

The resu l t s  of these calculations 
n7 

me l i m i t  of these r a t io s  as n approaches inf in i ty  is  two and & 
!respectively. 

VI. Numerical Results 

, 

curves,agree w i t h  actual error curves. 

of the actual  error curves occur close t o  the hec ted  points. 

- 
We now consider some examples t o  how w e l l  the error 

> I S ) ,  (9 )  cuhcc cy 
Fi r s t  w e  expect that the extrema 

In  addition 
4 

If yl(x) has a very rapidly 

error curve sho~ld resemble 
i 
1 



k n  * '  
An example where both assumptions are f u l f i l l e d  is the solution e : 

y(0) = 1, 0 S ,j$ 1. In  table I1 we show the resu l t s  taking the  
, 

c 
c n, e m  t o  five.  * 

I 

The errors  given in Table I1 are calculated at the "selected poi&," 

but would not vary much if calculated at the extrema1 points. 
h . .  

Thus we see that for the  extremsl case the magnitude of the peaks of 

t h e  error curve a re  nearly coastant. For the  Legendre case we choose 

. .  
1 

....... 

: i 
1 -  ' *', 

I 

I :  

! 

! 
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I sz 

I I 

-< 
a '  w+ ? 

, a constant f o r  the '-d curve (8) t o  match the middle residual 

, 1.57, -1.71, 1-57 and -1.12. 

e~ case we obtain 0.24; 2.25, -1.78, 2.25, and -.&. 
If w e  do the same , 

I 
c -  
! , 

- ;  Thus the Chebyshev' case exhibits the poorest agreement with the tbem&k& 

curve, and the  Legendre case the best. 

calculated the Legendre and extrema1 cases had error  curves much closer 

@ other examples that we 

, 
t o  the curves than the  Chebyshev case. Another quan€ity . D  

/ . Let us now consider the error at the end point f o r  the same equation. 

I '  

b 

In Tsble I11 we show the resu l t s  for different  n. 
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H e r e  we underline the first d ig i t  that wt be changed. 

for e is 2.71828182845904. ., so that the  last result using the  zeroes 

of the Legendre polynomisls is good t o  12 decimal places. 

The exact value 

1 
I 

Various other d i f fe ren t ia l  equations were integrated. If the  interval  

was chosen small enough t o  assume rapid convergence similar results 

were found. Where the interval  was large and convergence was slow the 

r e su l t s  were e r ra t ic .  But i n  all cases the  peaks in the error curves 

occurred close t o  the "selected points." And in all cases where the interval  

was fixed and n varied the end point error decreased more rapidly for  

t h e  Legendre case than f o r  t h e  other two. 
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VI. The Pract ical  Calculation of Solutions by the Picard Method 

One method of solution which i s  applicable t o  a wide range of problems i s  

based on the Picard method of successive approximations (Clenshaw and Norton 1963). 

Other m e t h o  

section. 

the equations are Linearized w i l l  be discussed i n  the next 

We seek a solution of 

A. 
a s P s b, where Y; are  the  init ial  conditions. With the change of variable 

we obtain 

Q ot Next we evaluate F (Y, x) at the  "s,lected points", f i t  the derivatives with p b y -  

nomials, and integrate t o  obtain the  next approximation. Instead of carrying out 

these operations expl ic i te ly  we can simplify the calculations, and thereby gain i n  

~ 

accuracy and speed, by precalculating the resu l t s  of these operations i n  the form of 

matrices. 

Legendre polynomials fo r  the  "selected points"). 

component, then the i t h  approximation 

-. *. 
1 ,*:. We i l l u s t r a t e  t h i s  first for  the Legendre case (using the zeroes of the 

I f  we assume that Y has only one 
#%-. . 

i 



where p 

number of points, and k the index of the point. Abscissas and weights for  Gaussian 

quadratwes are  tabulated i n  G a w l i k  (1958) and Davis and Rabinowitz (1956 and 1958). 

a re  the weight factors for Gaussian integration, n being the t o t a l  
n,k 

Or 

(15) can be derived using the property of Gaussian quadrature that  

whenever y (x) i s  a polynomial of degree 5 2n-1, and the orthogonal re la t ions of 

Legendre polynomials 

where bm i s  the Knonecker de l ta  function. Integrating (14) 

a a &  - I  

where a = 0 for  j 2 n. 3 

i 

25 
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A0 

, I n  evaluating a Legendre ser ies  o r  any ser ies  of polynomifis po (x), gl (x), .- . . 
satisfying a recursion of the form 

i 
; -  
! 

= I  

where the a.  I s ,  b . ' s  and c . ' s  are  constants independent of x, 

may be applied. 

Propulsion Laboratory. 

Theorem VII: 

3 9 ~  -2heorem -E 
J J J 

The theorem i n  t h i s  form i s  due t o  D r .  C. L. Lawson of the J e t  

The motivation for the  theorem i s  due t o  Clenshaw (1955). 

An expression of the  form 

can be evaluated by the following recursion formulas: 

-- fl /?A 

- m / r c  

r* +A y).w;, + 4 % - 1  /cCrN1"1 = ( A & - ,  4 ' I  

Mi = J.I.;x).,&-34, - C $ W + - r S  ""$ = M-2,  " - 3  .,. 0 
1 )  

y (  d =  w o  n 
To ver i fy  t h a t  wo i s  equal t o  di pi (x) multiply the equation containing di by *. 1 

i = O  
pi (x) and sum these n + 1 equations obtaining 

B . Lx ... . . 
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Then col lect  terms on the w,'s obtaining 

The coefficient of w 

of w1 i s  zero because of (*) and the coefficient of wa is one because of (18). 

j = 2, . . . , n, is  zero because of (20) and the  coefficient 
3' \ c /  

0 

Thus t h i s  equation reduces t o  
x 

<-. which i s  the desired result .  

For Chebyshev polynomials To (x) = 1, T1 (x) = x, T2 (x) = 2x2 - 1, etc. ,  t h i s  

recursion becomes par t icular ly  simple because with the exception of b 

&.Is, b 's, and c Is are independent of i. 

all of the 
0 

1 i i 

It; - 0  A ' 0  , I ,  * * .  

4 ,  = I 
4; -- 1 4 ' ;  I )  2 ,  . 

! 

i 

For Legendre polynomials Po (x) = 1, P1 (x) = x, P2 (x) = 

the  constants are  

x2 - 3, etc.  2 

/;= 0, f , ,  . 

We note that  the  calculation of t h e  coefficients and the  evaluation of the 

ser ies  are l inear  processes which re la te  calculated values of derivatives t o  the 

values of the h c t i o n s  at the "selected points." Thus there ex is t s  an n x n matrix 

y : ._ ".a' 

G such that 
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I -  

(21) 

by calculating each column i n  turn. For the  
3c 

j t h  column se t  h = 1, F (Q,., Sk) = 6 kj ,  yo = 0. The a ' s  and b's are  calculated 

by (15) and (17) and the  result ing ser ies  for  Q.+l i s  evaluated a t  the "selected 

points". These are the elements of the j t h  column of G. 

Although the  solution is  available i n  the form of a Legendre ser ies  it i s  
a - - - , ,  

preferable t o  have it i n  the form of a Chebyshev ser ies  because Chebyshev 
u + - w n w  + A ,.- 

ser ies  -fievaluat&* Another reason i s  tha t  the user can specify the 

accuracy he desires more easi ly  with a Chebyshev ser ies .  

forward matter t o  evaluate the  solution &i+l at the zeroes of Tn+l (Z) and f i t  

them with Chebyshev polynomials. thus obtaining the H matrix defined by 

Again it i s  a straight- 
4 

t 
r, F 
4 ?L 

where E i s  the column vector of coy cl, . . . c and 8 i s  the column vector of n' 
F(Qp q, FCQp $2)' 

We exhibit  the  G and H matrices for  n = 4 fo r  the  Legendre case, the  numbers 
&~~oLc(*nrcQIdc4ch  

being correct ly  rounded off.  The points are numbered s ta r t ing  with the point 
A 

E closest  t o  -1. 
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G =  

H =  

,29205613 39453250 ,25761265 055798711 

.lo736392 .39263608 ,39263608 .io736392 

- .08142227 - .14187$5 .14187965 .089142227 

.066563505 - .066563505 - .066563505 -066563505 

- .02898648 5 .073419724 - .073419724 .02898648 5 

S i m i l a r  matrices can be derived f o r t h e  extrema1 case. But here there i s  & 

d i f f i c u l t y  i n  f i t t i n g  6 with a polynmial. The problem can be handled as follows: 

By a change of scale ,$- - 
the  points are given by 

(23) 

If we include the points A = 1 and /A,,,, = -1 we can determine an n + l t h  degree 

POlYnrnial 9 (A) -- c ,  -/ c ,  7; ( A )  +. . . fCJJ-2) 3f +, (A) 
which takes on prescribed values at the  n + 2 points by 

-. $ .:. 
%- 

/ ..- . , 
0L ' 0  



with the understanding t h a t  the end points are  taken with half weight. We now 

define y (ho) and y (&n+l) so t h a t  c N and c n+l are  both zero. Thus t o  obtain the 4 

kth column of G we l e t  y (kk) = 1, y ui) = 0 f o r  i = 1, 2, . . . n, i # k, and 

... 

The Cheqbyshev ser ies  is  integrated with respect t o  dx and the constant of 

integration chosen arb i t ra r i ly .  

and the  transformation made from 

The series may then be converted t o  power form 

t o  x and then transformed in to  a Chebyshev 

ser ies  i n  X. O r  the function can be evaluated at the points 

constant term i s  evaluated. 

We exhibit the G and H matrices f o r  n = 4 f o r  the extremal case. 

are  renumbered s tar t ing with the point closest t o  -1. 

Again the points 

G =  

H =  

L 
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w 
An alternative method i s  given by Fi l ippi  (1964) for  doing t h i s  sor t  .of problem. 

A 

For 

elements 

7 . estimate 

large n it may be desirable 

are used i n  a fixed order. 

t o  store the matrices on tape, since the  

Also it i s  clear  that  for  large n we may 

the  H matrix by neglecting the difference 

between x and/d ,  or large n t h e  elements of kth column of H are appraximateu 

given by 

- 
with Hok = Ha - H2k + H3 9 . . . 
From (24) t o  (26) H s; , j Z 1 when n i s  sufficiently large. This assures 

jk j(n.1) 
us that the roundoff e r ro r -wi l l  be small. 

I 
, 
1 .  
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An approach t o  the  solution of nonlinear ordinary d i f fe ren t ia l  equations, 4 

I expecially those that are  (two point) boundary value problems i s  based on 
I 

I l inear iz ing the  equations. One method of l inear izat ion depends on a generalization 

formula t o  operator equations i n  Banach spaces obtained by 

Kantorovich (1948). Hestenes (1949) , Kalaba (1959), McGill and Kenneth (1964) and 

others applied t h i s  method t o  boundary value problems. 
i -  
i Norton (1964) showed how 

I t o  implement t h i s  method using Chebyshev series. 

I The method consists of solving (1) by i terat ions,  the  i t e r a t ion  being indicated 

by a subscript: 

By adding t o  any solution of (27) a suitable solution of the  homogeneous equation 

one can hope t o  sa t i s fy  the boundary conditions for  each i terat ion.  

I Kizner (1$4a) has shown another method for  linearizing the  equations. Let 
1 .  
i .  u s  rewrite (1) as 
i 
i 
i 9.: = +-, -t 1 p ( y +  Y) - + - I  1 (29) ! 1 

x F 

i 
E 

where X i s  a parameter t ha t  takes on values 0 s 8 5 1. 

t o  (1)& 

For x = 1 (29) i s  ident ical  
$ 

i 

i 7 = 0 yi = yi-l. Now consider yi as a function of both 2f and 1. 
b 

& 
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Then under very general conditions the following equation holds: 

k '  (30) may be interpreted a6 a matrix equation when the  number of dependent 
F 

variables is  greater than one. Also 

Thus far we have made no approximations and no l inearization. 

solve (3) by a "Runge-Kutta integration,.'' 

Now l e t  us formally 

The c lass ica l  Runge-Kutta fourth order 
A X .  

4 

formula "applied" t o  (31), with s tep size h = 1 resul t s  in the following se t  of 

l inear  d i f f e ren t i a l  equations: - 
i 

i where ki a r e  solutions of (30) evaluated according t o  the  following scheme: 
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I n  other words (30) i s  linearized by Substituting for  yi and the approximate 

'< expressions as given by a Runge-Kutta formula. 

t h e  5ame way that Runge-Kutta formulas are jus t i f ied  fo r  the numerical solution 

This procedure can be jus t i f ied  i n  
& 

of ordinary d i f f e r e n t i a  equations. Examples are given by Kizner (1964a). 

The advantages of t h i s  method are tha t  the boundary conditions are easily . t r  _ _  
i ?  t . '  

satisfied and that the convergence of the method seems t o  be increased. 

idea was applied by Kizner (1964b) t o  the solution of nonlinear equations. 

reason for  the success of "Runge-Kutta" type methods seems t o  be 

Kutta formulas take account i n  par t  some of the' higher order terms. 

A similar 

The 
I 

I d u e f i ~ - . i e  
& Runge- 

A collection 

I 

ad- A 

A 

of optimum Runge-Kutta formulas i s  given by Ralston (1962). 

these formulas, which i s  mainly i n  solving nonlinear equations, bears out the 

Our experience with 

: theoret ical  resu l t s  of Ralston about the  size of the truncation errors fo r  different 

formulas . 
VIII. Conclusions 

-&- 

--&4- /I/&*. 

Let us consider f ive choices for  the n selected points. 

1. 

2. 

Cheby shev 
choice Zeroes of Tn, called the 

Zeroes of Pn, called the Legendre choice 

._ 

* 
3. Extrema of the "stretchedlt Chebyshev polynomial Tn+l, called the extremal 

** 
n+l choice. 

The extrema of Tnml, as used by Clenshaw and h i s  associates, called the 

Clenshaw choice 

This  is  equivalent t o  using the zeroes of the derivative of T 

4. 

t 

5. The zeroes of T n+l, advocated by Fi l ippi  (1964), which we c a l l  the 

F i l ipp i  choice. 

For"wel1 behaved" functions and a proper choice of n the extremal choice 

yields the smallest m a x i m u m  error,  followed by ;the Legendre, F i l l i p i ,  Chebyshev, 

and Clenshaw choices.n Fi l ippi  (1964) discusses the 

where it yields  poor resul ts .  

&&E++&ZeDPA.r+uC(*&at.(&A-,+C. 

Clenshaw choice and shows examples 
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If we are  interested i n  keeping the end point error  as small as possible 

we should use the Legendre choice. Here the differences i n  accuracy are not 

something l i ke  a factor  of 2, as fo r  the  previous cr i ter ion,  but can amount t o  

many orders of magnitude. 

i-  
f 

1 .  

The author e s h e s  t o  thank D r .  C. L. Lawson of the  J e t  Propulsion Laboratory 
.f 
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